Abstract

Decision making for military railyard infrastructure is an inherently multi-objective problem, balancing cost versus capability. In this research, a Pareto-based Multi-Objective Evolutionary Algorithm is compared to a military rail inventory and decision support tool (RAILER). The problem is formulated as a multi-objective evolutionary algorithm in which the overall railyard condition is increased while decreasing cost to repair and maintain. A prioritization scheme for track maintenance is introduced that takes into account the volume of materials transported over the track and each rail segment’s primary purpose. Available repair options include repairing current 90 gauge rail, upgrade of rail segments to 115 gauge rail, and the swapping of rail removed during the upgrade. The proposed Multi-Objective Evolutionary Algorithm approach provides several advantages to the RAILER approach. The MOEA methodology allows decision makers to incorporate additional repair options beyond the current repair or do nothing options. It was found that many of the solutions identified by the evolutionary algorithm were both lower cost and provide a higher overall condition that those generated by DoD’s rail inventory and decision support system, RAILER. Additionally, the MOEA methodology generates lower cost, higher capability solutions when reduced sets of repair options are considered. The collection of non-dominated solutions provided by this technique gives decision makers increased flexibility and the ability to evaluate whether an additional cost repair solution is worth the increase in facility rail condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.