Abstract
In this paper, we prove parametrized Borsuk–Ulam theorems for bundles whose fibre has the same cohomology (mod p) as a product of spheres with any free ℤp–action and for bundles whose fibre has rational cohomology ring isomorphic to the rational cohomology ring of a product of spheres with any free S1–action. These theorems extend the result proved by Koikara and Mukerjee in [A Borsuk–Ulam type theorem for a product of spheres, Topology Appl. 63 (1995) 39–52]. Further, in the particular case where G=ℤp, we estimate the “size” of the ℤp–coincidence set of a fibre-preserving map.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.