Abstract

During the recent major earthquakes, some bridges suffered severe damage due to the pull-off-and-drop collapse of their decks. This is due to the large differential movements of the adjacent spans of bridges during strong shaking compared to the seating lengths provided. The differential movements are primarily due to the different vibration properties of adjacent spans and non-uniform ground excitations at the bridge supports. This paper analyses the effects of various bridge and ground motion parameters on the required seating lengths for bridge decks to prevent the pull-off-and-drop collapse. The random vibration method is used in the analysis. A two-span bridge model with different span lengths and vibration frequencies and subjected to various spatially varying ground excitations is analysed. Non-uniform spatial ground motions are modelled by the filtered Tajimi–Kanai power spectral density function and an empirical coherency function. Ground motions with different intensities, different cross-correlations and different site conditions are considered in the study. The required seating lengths for bridge decks are calculated. Numerical results are presented and discussed with respect to different bridge vibration and ground motion properties. © 1998 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call