Abstract
In this study, the thermal analysis for the impact of the cooling seawater site specific conditions on the thermal efficiency of a conceptual pressurized water reactor nuclear power plant (PWR NPP) is presented. The PWR NPP thermal performance depends upon the heat transfer analysis of steam surface condenser accounting for the key parameters such as the cooling seawater salinity and temperature that affect the condenser overall heat transfer coefficient and fouling factor. The study has two aspects: the first one is the impact of the temperature and salinity within a range of (290 K–310 K and 0.00–60000 ppm) on the seawater thermophysical properties such as density, specific heat, viscosity, and thermal conductivity that reflect a reduction in the condenser overall heat transfer coefficient from 2.25 kW/m2 K to 1.265 kW/m2 K at temperature and salinity of 290 K and 0.00 ppm and also from 2.35 kW/m2 K to 1.365 kW/m2 K at temperature and salinity of 310 K and 60000 ppm, whereas the second aspect is the fouling factor variations due to the seawater salinity. The analysis showed that the two aspects have a significant impact on the computation of the condenser overall heat transfer coefficient, whereas the increase of seawater salinity leads to a reduction in the condenser overall heat transfer coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.