Abstract

The effect of formic acid concentration (2–20 M), operating temperature (30–70 °C), and relative humidity (RH 40–90%) on the direct formic acid fuel cell (DFAFC) performance and fuel crossover were studied. In addition, air and oxygen were used to investigate the effect of oxidant flow rate on DFAFC performance and fuel crossover by operating the DFAFC under three modes of reactant supply: passive, semi passive (oxidant supplied), and active (both oxidant and fuel supplied). Fuel crossover was determined by measuring the percentage of exhausted carbon dioxide (CO2) at the cathode using a CO2 analyzer, from which the equivalent formic acid crossover flux was calculated. The results indicate that the DFAFC performance and fuel crossover were affected by formic acid concentration, temperature, humidity, oxidant flow rate, and the mode of operation. Optimums of these operating parameters were established for obtaining high performance of the DFAFC. The relationships between these parameters and the performance and fuel crossover of the DFAFC are discussed in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.