Abstract

The size of the stable region around the Lagrangian point L 4 in the elliptic restricted three-body problem is determined by numerical integration as a function of the mass parameter and eccentricity of the primaries. The size distribution of the stable regions in the mass parameter-eccentricity plane shows minima at certain places that are identified with resonances between the librational frequencies of motions around L 4. These are computed from an approximate analytical equation of Rabe relating the frequency, mass parameter and eccentricity. Solutions of this equation are determined numerically and the global behaviour of the frequencies depending on the mass parameter and eccentricity is shown and discussed. The minimum sizes of the stable regions around L 4 change along the resonances and the relative strength of the resonances is analysed. Applications to possible Trojan exoplanets are indicated. Escape from L 4 is also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.