Abstract

The precision of mesoscale simulation for three-dimensional woven composites (3DWCs) is intricately linked to the fidelity of the geometric representation. This paper aims to present a novel parametric modeling approach for generating representative volume element (RVE) of the 3DWCs while considering its realistic meso-structural characteristics. The real architecture of 3DWCs is defined to consider the squeezed surface warp tow. Tow geometry is specified, accounting for torsion of tow cross-section and crimp of weft tow path. The RVEs of the composites are geometrically assembled via a specific translational symmetry. The tensile response of the composites with the novel geometry is scrutinized utilizing a progressive damage model, compared with that of the ideal geometry. Additionally, the impact of weft tow size on the tensile response of the composites is explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.