Abstract

Regional differences in hemodynamic loads on arterial walls have been associated with localized vascular disease such as atherosclerosis and cerebral aneurysms. Due to their intrinsic geometric relevance, three-dimensional (3D) reconstructions of arterial segments are frequently used in hemodynamic studies of these diseases. However, it is not possible to use them to systematically vary geometric features for parametric studies. Idealized vascular models are inherently suited for parametric studies, but are limited by their tendency to oversimplify the vessel geometry. In this work, a hierarchy of three parametric bifurcation models is introduced. The models are relatively simple, yet capture all geometric features identified as common to cerebral bifurcations in the complex transition from parent to daughter branches. While these models were initially designed for parametric studies, we also evaluate the possibility of using them for 3D reconstruction of cerebral arteries, with the future goal of improving reconstruction of poor quality clinical data. The lumen surface and vessel hemodynamics are compared between two reconstructed cerebral bifurcations and matched parametric models. Good agreement is found. The average and maximum geometric differences are less than 3.1 and 10%, respectively for all three parametric models. The maximum difference in wall shear stress is less than 8% for the most complex parametric model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.