Abstract

This paper presents an image reconstruction method based on parametric level set (PLS) method using electrical impedance tomography. The conductivity to be reconstructed was assumed to be piecewise constant and the geometry of the anomaly was represented by a shape-based PLS function, which we represent using Gaussian radial basis functions (GRBF). The representation of the PLS function significantly reduces the number of unknowns, and circumvents many difficulties that are associated with traditional level set (TLS) methods, such as regularization, re-initialization and use of signed distance function. PLS reconstruction results shown in this article are some of the first ones using experimental EIT data. The performance of the PLS method was tested with water tank data for two-phase visualization and with simulations which demonstrate the most popular biomedical application of EIT: lung imaging. In addition, robustness studies of the PLS method w.r.t width of the Gaussian function and GRBF centers were performed on simulated lung imaging data. The experimental and simulation results show that PLS method has significant improvement in image quality compared with the TLS reconstruction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call