Abstract

A parametric investigation has been performed to study the different operating limits of heat pipes employing a novel type of metal foam as wick for chip cooling applications. These foams have a unique spherical pore cluster microstructure with very high surface to volume ratio compared to traditional metal foams and exhibit higher operating limits in preliminary tests of heat pipes, suggesting high cooling rates for microelectronics. In the first part of this parametric study, widely used correlations are applied to calculate the five types of heat transfer limits (capillary, boiling, viscous, entrainment and sonic) as a function of temperature, type of foam, and porosity. Results show that the dominant limit is mostly the capillary limit, but for 50 pore-per-inch (PPI) foam, the boiling limit will be dominant. Also, 50 and 60 PPI foams have higher heat transfer limits than sintered copper powder. In the second part of this study, thermodynamic steady state modeling of a flat heat pipe has been done to study the effect of the different parameters on the dominant limit (capillary). A dimensionless number has been proposed to evaluate the balance between the pressure loss in the vapor and liquid phases as an additional design guideline to improve the capillary limit in flat heat pipes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.