Abstract
A parametric Colored Petri net model of the switched Ethernet network with the tree-like topology is developed. The model’s structure is the same for any given network and contains fixed number of nodes. The tree-like topology of a definite network is given as the marking of dedicated places. The model represents a network containing workstations, servers, switches, and provides the evaluation of the network response time. Besides topology, the parameters of the model are performances of hardware and software used within the network. Performance evaluation for the network of the railway dispatcher center is implemented. Topics of the steady-stable condition and the optimal choice of hardware are discussed.
Highlights
The performance evaluation of networks is a significant task especially for real-time applications such as technological processes and traffic control
Colored Petri nets [2] implemented in CPN Tools [3] allow the representation of plain colored nets as well as timed and hierarchical nets
In the present work we propose the parametric model, which is invariant with respect to topology
Summary
The performance evaluation of networks is a significant task especially for real-time applications such as technological processes and traffic control. The complexity of modern networks makes pure analytical methods difficult, for instance, the theory of Markovian processes or the theory of queueing networks For this purpose, ad hoc simulating systems are developed [1]. We are interested in the statistical characteristics of models’ behavior. For these purposes CPN Tools proposes a wide range of implemented random functions, for instance, uniformly, exponentially distributed etc. Besides standard facilities for the accumulation of statistical information, special measuring fragments of Petri net model [5] are used. The constructed model was used for performance evaluation of the switched network for a railway dispatcher center sup-.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Communications, Network and System Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.