Abstract
In this paper, we extend the exponentially embedded family (EEF), a new approach to model order estimation and probability density function construction originally proposed by Kay in 2005, to multivariate pattern recognition. Specifically, a parametric classifier rule based on the EEF is developed, in which we construct a distribution for each class based on a reference distribution. The proposed method can address different types of classification problems in either a data-driven manner or a model-driven manner. In this paper, we demonstrate its effectiveness with examples of synthetic data classification and real-life data classification in a data-driven manner and the example of power quality disturbance classification in a model-driven manner. To evaluate the classification performance of our approach, the Monte-Carlo method is used in our experiments. The promising experimental results indicate many potential applications of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.