Abstract
For more than 50 years the Mean Measure of Divergence (MMD) has been one of the most prominent tools used in anthropology for the study of non-metric traits. However, one of the problems, in anthropology including palaeoanthropology (more often there), is the lack of big enough samples or the existence of samples without sufficiently measured traits. Since 1969, with the advent of bootstrapping techniques, this issue has been tackled successfully in many different ways. Here, we present a parametric bootstrap technique based on the fact that the transformed θ, obtained from the Anscombe transformation to stabilize the variance, nearly follows a normal distribution with standard deviation $\sigma = 1 / \sqrt{N + 1/2}$σ=1/N+1/2, where N is the size of the measured trait. When the probabilistic distribution is known, parametric procedures offer more powerful results than non-parametric ones. We profit from knowing the probabilistic distribution of θ to develop a parametric bootstrapping method. We explain it carefully with mathematical support. We give examples, both with artificial data and with real ones. Our results show that this parametric bootstrap procedure is a powerful tool to study samples with scarcity of data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.