Abstract
This article is about testing the equality of several normal means when the variances are unknown and arbitrary, i.e., the set up of the one-way ANOVA. Even though several tests are available in the literature, none of them perform well in terms of Type I error probability under various sample size and parameter combinations. In fact, Type I errors can be highly inflated for some of the commonly used tests; a serious issue that appears to have been overlooked. We propose a parametric bootstrap (PB) approach and compare it with three existing location-scale invariant tests—the Welch test, the James test and the generalized F (GF) test. The Type I error rates and powers of the tests are evaluated using Monte Carlo simulation. Our studies show that the PB test is the best among the four tests with respect to Type I error rates. The PB test performs very satisfactorily even for small samples while the Welch test and the GF test exhibit poor Type I error properties when the sample sizes are small and/or the number of means to be compared is moderate to large. The James test performs better than the Welch test and the GF test. It is also noted that the same tests can be used to test the significance of the random effect variance component in a one-way random model under unequal error variances. Such models are widely used to analyze data from inter-laboratory studies. The methods are illustrated using some examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.