Abstract
In the present study, the application of six engine oil-based Nano fluids (NFs) in a solar concentrating photovoltaic thermal (CPVT) collector is investigated. The calculations were performed for different values of nanoparticle volume concentration, receiver tube diameter, concentrator surface area, receiver length, receiver actual to the maximum number of channels ratio, beam radiation, and a constant volumetric flow rate. Besides, two novel soft computing paradigms namely, the cascaded forward neural network (CFNN) and Multi-gene genetic programming (MGGP) were adopted to predict the first law efficiency (ηI) and second law efficiency (ηII) of the system based on the influential parameters, as the input features. It was found that the increase of nanoparticle concentration leads to an increase in ηI and a decrease in ηII. Moreover, the rise of both the concentrator surface area (from 5 m2 to 20 m2) and beam irradiance (from 150 W/m2 to 1000 W/m2) entails an increase in both the ηI (by 39% and 261%) and ηII (by 55% and 438%). Furthermore, it was reported that the pattern of changes in both ηI and ηII with serpentine tube diameter, receiver plate length, and absorber tube length is increasing-decreasing. The results of modeling demonstrated that the CFNN had superior performance than the MGGP model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.