Abstract
With the accelerated growth in population and technology progress in day-to-day life, the traditional fuels demands have increased significantly. Despite the execution of many renewable sources (solar, wind, geothermal, biomass), the modern issues such as high investment and power costs have slowed down their development. In this context, improvisation of the existing power generation ways is required by evolving a highly effective thermal system to extract renewable energy available for low grade waste heat. At present, many of the applicable practices are engrossed on high temperature heat extraction rather than low-grade heat in spite of being expensive. In this work, innovative technology has been recommended by amalgamation of the Trilateral Flash Cycle (TFC) with an expander (reaction turbine) in a binary system to offer improved operation, economical and broader employment of the existing resources. TFC can extract heat more efficiently from hydrothermal means to improve power generation directly and decrease the emissions of greenhouse gas. A theoretical analysis using a computer based model for TFC with simple reaction turbine for three proposed diameters at various rotational speeds and operating fluids is performed. Results of output powers and turbine efficiencies of the recommended system are compared. Also, this design concludes the optimum design factors for the turbine under explicit operational settings and the factors affecting the efficiency and nozzle flow area are discussed for the TFC system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.