Abstract

We study (vertex-disjoint) packings of paths of length two (i.e., of P 2’s) in graphs under a parameterized perspective. Starting from a maximal P 2-packing ℘ of size j we use extremal combinatorial arguments for determining how many vertices of ℘ appear in some P 2-packing of size (j+1) (if such a packing exists). We prove that one can ‘reuse’ 2.5j vertices. We also show that this bound is asymptotically sharp. Based on a WIN-WIN approach, we build an algorithm which decides, given a graph, if a P 2-packing of size at least k exists in time $\mathcal{O}^{*}(2.448^{3k})$ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.