Abstract

The parameterization process used in the symbolic computation systems Kenzo and EAT is studied here as a general construction in a categorical framework. This parameterization process starts from a given specification and builds a parameterized specification by adding a parameter as a new variable to some operations. Given a model of the parameterized specification, each interpretation of the parameter, called an argument, provides a model of the given specification. Moreover, under some relevant terminality assumption, this correspondence between the arguments and the models of the given specification is a bijection. It is proved in this paper that the parameterization process is provided by a functor and the subsequent parameter passing process by a natural transformation. Various categorical notions are used, mainly adjoint functors, pushouts and lax colimits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.