Abstract

Abstract Cold pool outflows, generated by downdrafts from moist convection, can generate strong winds and therefore uplift of mineral dust. These so-called haboob convective dust storms occur over all major dust source areas worldwide and contribute substantially to emissions in northern Africa, the world’s largest source. Most large-scale models lack convective dust storms because they do not resolve moist convection, relying instead on convection schemes. The authors suggest a parameterization of convective dust storms to account for their contribution in such large-scale models. The parameterization is based on a simple conceptual model, in which the downdraft mass flux from the convection scheme spreads out radially in a cylindrical cold pool. The parameterization is tested with a set of Met Office Unified Model runs for June and July 2006 over West Africa. It is calibrated with a convection-permitting run and applied to a convection-parameterized run. The parameterization successfully produces the extensive area of dust-generating winds from cold pool outflows over the southern Sahara. However, this area extends farther to the east and dust-generating winds occur earlier in the day than in the convection-permitting run. These biases are caused by biases in the convection scheme. It is found that the location and timing of dust-generating winds are weakly sensitive to the parameters of the conceptual model. The results demonstrate that a simple parameterization has the potential to correct a major and long-standing limitation in global dust models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call