Abstract
Based on the basis of B-spline functions an efficient numerical scheme on a piecewise-uniform mesh is suggested to approximate the solution of singularly perturbed problems with an integral boundary condition and having a delay of unit magnitude. For the small diffusion parameter $$\varepsilon $$, an interior layer and a boundary layer occur in the solution. Unlike most numerical schemes our scheme does not require the differentiation of the problem data (integral boundary condition). The parameter-uniform convergence (the second-order convergence except for a logarithmic factor) is confirmed by numerical computations of two test problems. As a variant double mesh principle is used to measure the accuracy of the method in terms of the maximum absolute error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.