Abstract
A parameter sensitivity analysis is an important part of the stability study of hydro turbine regulation systems, which helps operators to deepen their understanding of the characteristics and connections among the various parts of these systems. Considering that large hydropower stations undertake an essential regulation task in the power grid, the safety and stability of their operation cannot be ignored. To this end, taking a unit in a giant hydropower station in China as an example, a hydraulic–mechanical–electrical coupling model of the hydraulic turbine regulation system is established. A comprehensive parameter sensitivity indicator and parameter sensitivity analysis framework are proposed. On this basis, the sensitivity of the main system variables to parameter changes under full operating conditions is investigated by considering two different control modes of the unit (i.e., corresponding to different grid types). The results show that the sensitivity of the system state to the mechanical parameters of the generator is the highest in the power control mode, while the sensitivity to the electrical parameters of the generator and excitation system is higher in the frequency control mode. The sensitivity of the system with these key parameters also shows different patterns of change with a change in the unit operating conditions. The relevant findings can provide some theoretical guidance for the operation of hydropower stations and help to reduce the risk of system instability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.