Abstract
Remote sensing image object detection is a challenging task in the field of computer vision due to the complex backgrounds and diverse arrangements of targets in remote sensing images, forming intricate scenes. To overcome this challenge, existing object detection models adopt rotated target detection methods. However, these methods often lead to a loss of semantic information during feature extraction, specifically regarding the insufficient consideration of element correlations. To solve this problem, this research introduces a novel attention module (EuPea) designed to effectively capture inter-elemental information in feature maps and generate more powerful feature maps for use in neural networks. In the EuPea attention mechanism, we integrate distance information and Pearson correlation coefficient information between elements in the feature map. Experimental results show that using either type of information individually can improve network performance, but their combination has a stronger effect, producing an attention-weighted feature map. This improvement effectively enhances the object detection performance of the model, enabling it to better comprehend information in remote sensing images. Concurrently, this also improves missed detections and false alarms in object detection. Experimental results obtained on the DOTA, NWPU VHR-10, and DIOR datasets indicate that, compared with baseline RCNN models, our approach achieves respective improvements of 1.0%, 2.4%, and 1.8% in mean average precision (mAP).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.