Abstract
In this work, we propose a new criterion for choosing the regularization parameter in Tikhonov regularization when the noise is white Gaussian. The criterion minimizes a lower bound of the predictive risk, when both data norm and noise variance are known, and the parameter choice involves minimizing a function whose solution depends only on the signal-to-noise ratio. Moreover, when neither noise variance nor data norm is given, we propose an iterative algorithm which alternates between a minimization step of finding the regularization parameter and an estimation step of estimating signal-to-noise ratio. Simulation studies on both small- and large-scale datasets suggest that the approach can provide very accurate and stable regularized inverse solutions and, for small sized samples, it outperforms discrepancy principle, balancing principle, unbiased predictive risk estimator, L-curve method, generalized cross validation, and quasi-optimality criterion, and achieves excellent stability hitherto unavailable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.