Abstract

ABSTRACT In the era of big data, radio astronomical image reconstruction algorithms are challenged to estimate clean images given limited computing resources and time. This article is driven by the need for large-scale image reconstruction for the future Square Kilometre Array (SKA), which will become in the next decades the largest low and intermediate frequency radio telescope in the world. This work proposes a scalable wide-band deconvolution algorithm called MUFFIN, which stands for ‘MUlti Frequency image reconstruction For radio INterferometry’. MUFFIN estimates the sky images in various frequency bands, given the corresponding dirty images and point spread functions. The reconstruction is achieved by minimizing a data fidelity term and joint spatial and spectral sparse analysis regularization terms. It is consequently non-parametric w.r.t. the spectral behaviour of radio sources. MUFFIN algorithm is endowed with a parallel implementation and an automatic tuning of the regularization parameters, making it scalable and well suited for big data applications such as SKA. Comparisons between MUFFIN and the state-of-the-art wide-band reconstruction algorithm are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.