Abstract
Spiking neural network (SNN) has attracted extensive attention in the field of machine learning because of its biological interpretability and low power consumption. However, the accuracy of pattern recognition cannot completely surpass deep neural networks (DNNs). The main reason is that the inherent nondifferentiability of spiking neurons makes SNN unable to be trained directly by the gradient descent algorithm, and there is also no unified training algorithm for SNN. Inspired by the biological vision system, this paper proposes a parallel convolution SNN structure combined with an adaptive lateral inhibition mechanism. And, a way of dynamically evolving the time constant with the training of SNN is proposed to ensure the diversity of neurons. This paper verifies the effectiveness of the proposed methods on static datasets and neuromorphic datasets and extends it to the recognition of breast tumors. Experimental results show that the SNN has obvious advantages in dynamical datasets. For breast tumors, it is also an edge-based task, because the edge of a medical image contains the most important information in the image. This kind of information can provide great help for the noninvasive and accurate diagnosis of diseases. The Experimental results show that the proposed method is very close to the recognition results of DNNs on static datasets, and its performance on neuromorphic datasets exceeds that of DNNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.