Abstract
The recently developed Hierarchical Poincaré–Steklov (HPS) method is a high-order discretization technique that comes with a direct solver. Results from previous papers demonstrate the method’s ability to solve Helmholtz problems to high accuracy without the so-called pollution effect. While the asymptotic scaling of the direct solver’s computational cost is the same as the nested dissection method, serial implementations of the solution technique are not practical for large scale numerical simulations. This manuscript presents the first parallel implementation of the HPS method. Specifically, we introduce an approach for a shared memory implementation of the solution technique utilizing parallel linear algebra. This approach is the foundation for future large scale simulations on supercomputers and clusters with large memory nodes. Performance results on a desktop computer (resembling a large memory node) are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.