Abstract

Medical image segmentation is nowadays at the core of medical image analysis and supports computer-aided diagnosis, surgical planning, intra-operative guidance or postoperative assessment. Large amounts of research efforts have been made in developing effective brain MR (magnetic resonance) image tumor segmentation methods in the past years. However algorithms proposed so far are time consuming because it involves lot of mathematical computations. Also serial segmentation of multiple MRI slices (usually required for 3D visualization) takes exponential time. This results in need for improvement in performance as far as the time complexity is concerned. This paper proposes a methodology that incorporates the K-means clustering and morphological operation for parallel segmentation of multiple MRI slices corresponding to single patient. Segmentation of multiple MRI slices for tumor extraction plays major role in 3D (Three Dimensional) visualization and serves as an input for the same. The proposed framework follows SIMD (Single Instruction Multiple Data) model and since the segmentation of individual slice is independent of each other and can be performed in parallel and multithreading definitely speeds up the entire process. Also the framework does not involve any kind of inter-process communication thus the time is saved here as well.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call