Abstract
Benefitting from economic development and technological progress, long-span suspension bridges, with their superior span capacity and good economy, have been built in large numbers in recent decades. However, the excessive cumulative longitudinal displacement at the girder ends in the process of bridge operation leads to the degradation of, and fatigue damage to, the connecting components. This study aims to solve the problem with an effective parallel damping scheme of friction dampers and viscous dampers. Firstly, the phenomenon that quasi-static longitudinal displacement accounts for the majority of cumulative displacement is confirmed by the decomposition of measured displacement data at the girder end, which is caused by the asymmetric geometric deformation of the main cable induced by the moving vertical loads of a long-span suspension bridge. An efficient control performance analysis method is proposed based on the formation mechanism of the quasi-static longitudinal displacement. Secondly, the friction damper with a continuous damping model is employed to achieve an effective control performance with respect to the quasi-static longitudinal displacement. Thirdly, in order to realize the target of operational and seismic dual control, a parallel scheme of friction dampers and viscous dampers is proposed, aiming to reduce the cumulative value in the operational state, and maximum value in the seismic state, for longitudinal displacement at the girder ends of a long-span suspension bridge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.