Abstract
Quadratic programming problems (QPs) that arise from dynamic optimization problems typically exhibit a very particular structure. We address the ubiquitous case where these QPs are strictly convex and propose a dual Newton strategy that exploits the block-bandedness similarly to an interior-point method. Still, the proposed method features warmstarting capabilities of active-set methods. We give details for an efficient implementation, including tailored numerical linear algebra, step size computation, parallelization, and infeasibility handling. We prove convergence of the algorithm for the considered problem class. A numerical study based on the open-source implementation qpDUNES shows that the algorithm outperforms both well-established general purpose QP solvers as well as state-of-the-art tailored control QP solvers significantly on the considered benchmark problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.