Abstract

In this paper emerging parallel/distributed architectures are explored for the digital VLSI implementation of adaptive bidirectional associative memory (BAM) neural network. A single instruction stream many data stream (SIMD)-based parallel processing architecture, is developed for the adaptive BAM neural network, taking advantage of the inherent parallelism in BAM. This novel neural processor architecture is named the sliding feeder BAM array processor (SLiFBAM). The SLiFBAM processor can be viewed as a two-stroke neural processing engine, It has four operating modes: learn pattern, evaluate pattern, read weight, and write weight. Design of a SLiFBAM VLSI processor chip is also described. By using 2-mum scalable CMOS technology, a SLiFBAM processor chip with 4+4 neurons and eight modules of 256x5 bit local weight-storage SRAM, was integrated on a 6.9x7.4 mm(2) prototype die. The system architecture is highly flexible and modular, enabling the construction of larger BAM networks of up to 252 neurons using multiple SLiFBAM chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.