Abstract

The paper designs a peripheral maximum gray difference (PMGD) image segmentation method, a connected-component labeling (CCL) algorithm based on dynamic run length (DRL), and a real-time implementation streaming processor for DRL-CCL. And it verifies the function and performance in space target monitoring scene by the carrying experiment of Tianzhou-3 cargo spacecraft (TZ-3). The PMGD image segmentation method can segment the image into highly discrete and simple point targets quickly, which reduces the generation of equivalences greatly and improves the real-time performance for DRL-CCL. Through parallel pipeline design, the storage of the streaming processor is optimized by 55% with no need for external memory, the logic is optimized by 60%, and the energy efficiency ratio is 12 times than that of the graphics processing unit, 62 times than that of the digital signal proccessing, and 147 times than that of personal computers. Analyzing the results of 8756 images completed on-orbit, the speed is up to 5.88 FPS and the target detection rate is 100%. Our algorithm and implementation method meet the requirements of lightweight, high real-time, strong robustness, full-time, and stable operation in space irradiation environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call