Abstract
In this paper, the sound absorption characteristics of a parallel micro-perforated panel absorber (MPPA) fabricated from polyvinylidene fluoride (PVDF) piezoelectric film are studied under an alternating voltage excitation. The simulation and experimental results show that when a certain frequency of AC voltage is applied to the parallel micro-perforated panel, the sound absorption characteristics of the MPPA at the excitation frequency can be improved due to the electrically induced vibration. With an increase in the alternating voltage amplitude, the improvement in sound absorption characteristics is more obvious. Therefore, the sound absorption coefficient of parallel PVDF-MPPA in the target frequency band can be improved by adjusting the parameters of excitation voltage reasonably. Based on the convenience of voltage regulation, this method is very suitable for suppressing the noise of the main frequency fluctuation without changing the structural parameters of the absorber. More importantly, the parallel PVDF-MPPA can apply voltage excitations of different parameters simultaneously, which is beneficial to improve the sound absorption effect in a wider frequency band. This study may provide a reference for the design of intelligent absorbers, especially for noise reduction structures in narrow spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.