Abstract

Protein structure prediction is one of the most important problems in bioinformatics and structural biology. This work proposes a novel and suitable methodology to model protein structure prediction with atomic-level detail by using a parallel multi-objective ab initio approach. In the proposed model, i) A trigonometric representation is used to compute backbone and side-chain torsion angles of protein atoms; ii) The Chemistry at HARvard Macromolecular Mechanics (CHARMm) function optimizes and evaluates the structures of the protein conformations; iii) The evolution of protein conformations is directed by optimization of protein energy contributions using the multi-objective genetic algorithm NSGA-II; and iv) The computation process is sped up and its effectiveness improved through the implementation of an island model of the evolutionary algorithm. The proposed model was validated on a set of benchmark proteins obtaining very promising results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.