Abstract

A scalable multi-configuration self-consistent field (MCSCF) algorithm is described. The method for optimizing the orbital and configurational parameters is based upon the two-step Newton–Raphson approach with an augmented orbital Hessian matrix. A single copy of the two-electron integrals in the molecular orbital basis is distributed over the memory of all processors. Storage of the augmented Hessian is avoided by re-computing its elements as needed. A replicated data approach is used to parallelize the configuration interaction step. Scalability to 1024 processors is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call