Abstract

Searching for the longest common substring (LCS) of biosequences is one of the most important tasks in Bioinformatics. A fast algorithm for LCS problem named FAST_LCS is presented. The algorithm first seeks the successors of the initial identical character pairs according to a successor table to obtain all the identical pairs and their levels. Then by tracing back from the identical character pair at the largest level, the result of LCS can be obtained. For two sequences X and Y with lengths n and m, the memory required for FAST_LCS is max{8*(n+1)+8*(m+1),L}, here L is the number of identical character pairs and time complexity of parallel implementation is O(|LCS(X, Y)|), here, |LCS(X, Y)| is the length of the LCS of X, Y. Experimental result on the gene sequences of tigr database shows that our algorithm can get exactly correct result and is faster and more efficient than other LCS algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.