Abstract

AbstractThe numerical solution of Maxwell's curl equations in the time domain is achieved by combining an unstructured mesh finite element algorithm with a cartesian finite difference method. The practical problem area selected to illustrate the application of the approach is the simulation of three‐dimensional electromagnetic wave scattering. The scattering obstacle and the free space region immediately adjacent to it are discretized using an unstructured mesh of linear tetrahedral elements. The remainder of the computational domain is filled with a regular cartesian mesh. These two meshes are overlapped to create a hybrid mesh for the numerical solution. On the cartesian mesh, an explicit finite difference method is adopted and an implicit/explicit finite element formulation is employed on the unstructured mesh. This approach ensures that computational efficiency is maintained if, for any reason, the generated unstructured mesh contains elements of a size much smaller than that required for accurate wave propagation. A perfectly matched layer is added at the artificial far field boundary, created by the truncation of the physical domain prior to the numerical solution. The complete solution approach is parallelized, to enable large‐scale simulations to be effectively performed. Examples are included to demonstrate the numerical performance that can be achieved. Copyright © 2009 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.