Abstract

One approach to solving the nonsymmetric eigenvalue problem in parallel is to parallelize the QR algorithm. Not long ago, this was widely considered to be a hopeless task. Recent efforts have led to significant advances, although the methods proposed up to now have suffered from scalability problems. This paper discusses an approach to parallelizing the QR algorithm that greatly improves scalability. A theoretical analysis indicates that the algorithm is ultimately not scalable, but the nonscalability does not become evident until the matrix dimension is enormous. Experiments on the Intel Paragon system, the IBM SP2 supercomputer, the SGI Origin 2000, and the Intel ASCI Option Red supercomputer are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.