Abstract
Abstract In this paper, we propose a hybrid parallel programming approach for a numerical solution of a two-dimensional acoustic wave equation using an implicit difference scheme for a single computer. The calculations are carried out in an implicit finite difference scheme. First, we transform the differential equation into an implicit finite-difference equation and then using the alternating direction implicit (ADI) method, we split the equation into two sub-equations. Using the cyclic reduction algorithm, we calculate an approximate solution. Finally, we change this algorithm to parallelize on graphics processing unit (GPU), GPU + Open Multi-Processing (OpenMP), and Hybrid (GPU + OpenMP + message passing interface (MPI)) computing platforms. The special focus is on improving the performance of the parallel algorithms to calculate the acceleration based on the execution time. We show that the code that runs on the hybrid approach gives the expected results by comparing our results to those obtained by running the same simulation on a classical processor core, Compute Unified Device Architecture (CUDA), and CUDA + OpenMP implementations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Nonlinear Sciences and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.