Abstract
The visualization of streaming high-dimensional data often needs to consider the speed in dimensionality reduction algorithms, the quality of visualized data patterns, and the stability of view graphs that usually change over time with new data. Existing methods of streaming high-dimensional data visualization primarily line up essential modules in a serial manner and often face challenges in satisfying all these design considerations. In this research, we propose a novel parallel framework for streaming high-dimensional data visualization to achieve high data processing speed, high quality in data patterns, and good stability in visual presentations. This framework arranges all essential modules in parallel to mitigate the delays caused by module waiting in serial setups. In addition, to facilitate the parallel pipeline, we redesign these modules with a parametric non-linear embedding method for new data embedding, an incremental learning method for online embedding function updating, and a hybrid strategy for optimized embedding updating. We also improve the coordination mechanism among these modules. Our experiments show that our method has advantages in embedding speed, quality, and stability over other existing methods to visualize streaming high-dimensional data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on visualization and computer graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.