Abstract
Moving contact line problem plays an important role in fluid-fluid interface motion on solid surfaces. The problem can be described by a phase-field model consisting of the coupled Cahn–Hilliard and Navier–Stokes equations with the generalized Navier boundary condition (GNBC). Accurate simulation of the interface and contact line motion requires very fine meshes, and the computation in 3D is even more challenging. Thus, the use of high performance computers and scalable parallel algorithms are indispensable. In this paper, we generalize the GNBC to surfaces with complex geometry and introduce a finite element method on unstructured 3D meshes with a semi-implicit time integration scheme. A highly parallel solution strategy using different solvers for different components of the discretization is presented. More precisely, we apply a restricted additive Schwarz preconditioned GMRES method to solve the systems arising from implicit discretization of the Cahn–Hilliard equation and the velocity equation, and an algebraic multigrid preconditioned CG method to solve the pressure Poisson system. Numerical experiments show that the strategy is efficient and scalable for 3D problems with complex geometry and on a supercomputer with a large number of processors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.