Abstract
In recent years, deep-learning-based motor imagery (MI) electroencephalography (EEG) decoding methods have shown great potential in the field of the brain–computer interface (BCI). The existing literature is relatively mature in decoding methods for two classes of MI tasks. However, with the increase in MI task classes, decoding studies for four classes of MI tasks need to be further explored. In addition, it is difficult to obtain large-scale EEG datasets. When the training data are limited, deep-learning-based decoding models are prone to problems such as overfitting and poor robustness. In this study, we design a data augmentation method for MI-EEG. The original EEG is slid along the time axis and reconstructed to expand the size of the dataset. Second, we combine the gated recurrent unit (GRU) and convolutional neural network (CNN) to construct a parallel-structured feature fusion network to decode four classes of MI tasks. The parallel structure can avoid temporal, frequency and spatial features interfering with each other. Experimenting on the well-known four-class MI dataset BCI Competition IV 2a shows a global average classification accuracy of 80.7% and a kappa value of 0.74. The proposed method improves the robustness of deep learning to decode small-scale EEG datasets and alleviates the overfitting phenomenon caused by insufficient data. The method can be applied to BCI systems with a small amount of daily recorded data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.