Abstract

A torque-controlled back-support exoskeleton to assist manual handling is presented. Its objective is to provide a significant portion of the forces necessary to carry out the physical task, thereby reducing the compressive loads on the lumbar spine and the associated risk of injury. The design rationale for a parallel-elastic actuator (PEA) is proposed to match the asymmetrical torque requirements associated with the target task. The parallel spring relaxes the maximum motor torque requirements, with substantial effects on the resulting torque-control performance. A formal analysis and experimental evaluation is presented with the goal of documenting the improvement in performance. To this end, the proposed PEA is compared with a more traditional configuration without the parallel spring. The formal analysis and experimental results highlight the importance of the motor inertia reflected through the gearbox and illustrate the improvements in the proposed measures of torque-control performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.