Abstract

We present a scalable, modular, memoryless, and reconfigurable parallel architecture to generate cryptographically robust mappings, which are useful in the construction of stream and block ciphers. It has been theoretically proved that the proposed architecture can be reconfigured to generate a large number of mappings, all of which have high nonlinearity, satisfies Strict Avalanche Criterion (SAC) and is robust against linear and differential cryptanalysis. The architecture can be also used to optimize the resiliency and algebraic degree. The architecture has been found to scale easily to handle large number of input variables, which is an important criterion in realizing nonlinear combiners for stream ciphers using Boolean functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.