Abstract
The parallelism provided by low cost environments as multi-core and GPU processors has encouraged the design of algorithms that can utilize it. In the last time, the GPU approach constitutes an environment of proven successful progress in the implementation of different bio-inspired algorithms without major additional costs of performance. Among these techniques, the Firefly Algorithm (FA) is a recent method based on the flashing light of fireflies. As a population-based algorithm with operations without a high level of divergence, it is well suited as a highly parallelizable model on GPU. In this work we describe the design of a Discrete Firefly Algorithm (GPU-DFA) to solve permutation combinatorial problems. Two well-known permutation optimization problems (Travelling Salesman Problem and DNA Fragment Assembling Problem) were employed in order to test GPU-DFA. We have evaluated numerical efficacy and performance with respect to a CPU-DFA version. Results demonstrate that our algorithm is a fast robust procedure for the treatment of heterogeneous permutation combinatorial problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.