Abstract

We introduce a distributed algorithm for solving large scale support vector machines (SVM) problems. The algorithm divides the training set into a number of processing nodes each running independently an SVM sub-problem associated with its subset of training data. The algorithm is a parallel (Jacobi) block-update scheme derived from the convex conjugate (Fenchel duality) form of the original SVM problem. Each update step consists of a modified SVM solver running in parallel over the sub-problems followed by a simple global update. We derive bounds on the number of updates showing that the number of iterations (independent SVM applications on sub-problems) required to obtain a solution of accuracy isin is O(log(1/isin)). We demonstrate the efficiency and applicability of our algorithms by running on large scale experiments on standardized datasets while comparing the results to the state-of-the-art SVM solvers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.