Abstract

Huffman coding, a variable-length entropy coding scheme, is an integral component of international standards on image and video compression including high-definition television (HDTV). The high-bandwidth HDTV systems of data rate in excess of 100 Mpixels/s presents a challenge for designing a fast and economic circuit for intrinsically sequential Huffman decoding operations. This paper presents an algorithm and a circuit implementation for parallel decoding of programmable Huffman codes by using the numerical properties of Huffman codes. The 1.2 /spl mu/m CMOS implementation for a single JPEG AC table of 256 codewords of up to 16-b codeword lengths is estimated to run at 10 MHz with a chip area of 11 mm/sup 2/, decoding one codeword per cycle. The design can be pipelined to deliver a throughput of 80 MHz for decoding input streams of consecutive Huffman codes. Furthermore, our programmable scheme can be easily integrated into data paths of video processors to support different Huffman tables used in image/video applications. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.