Abstract

The mechanical behaviours of rock mass are influenced by the presence of cracks at the microscopic and macroscopic levels. When coupled with corrosion by chemical ions in ground water, these cracks can cause instabilities and fragmentation near the excavated surface of underground structures, such as shield tunnels, etc. This paper presents the development of a parallel-bonded chemical corrosion (PCC) model for modelling corroded rocks (limestone). The model extends the bonded-particle model (BPM) by adding a chemically induced damage law to the particle bond. The damage law of the PCC model is derived from Nuclear Magnetic Resonance (NMR) and triaxial compression tests. The PCC model is validated with experimental results and is capable of simulating the micro-damage evolution process as well as predicting the macro-mechanical degradation caused by the chemical corrosion. It is then applied to investigate chemical effects on crack initiation, propagation, coalescence, and the mechanical properties of the limestone containing pre-existing flaws. Microscale correlations are derived linking the crack propagation process, flaw distribution and the effects of chemical corrosion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.