Abstract

This article reports on the influence of (i) concrete compressive strength (ii) specimen geometry (iii) change in rate of loading (iv) percentage of steel reinforcement [area of steel reinforcement as a percentage of the effective area of reinforced concrete (RC) structural member’s cross section] (v) mode of failure on the relaxation ratio parameter (Colombo et al., 2005a, 2005b) of acoustic emissions (AE) released during fracture process in reinforced concrete (RC) flanged beam specimens. The aim is to study the feasibility of relaxation ratio analysis of AE signals for damage assessment in RC beams. The beam specimens were tested in the laboratory under incremental cyclic loading. The loading cycle first entered into the relaxation dominant phase in the relaxation ratio plot was equal or close to the loading cycle entering first into the heavy damage zone in the NDIS-2421 damage assessment plot proposed by Japanese society for nondestructive inspection. Further, the lowest AE based b-value was observed at the same or nearer loading cycle. Relaxation ratio analysis of AE signals is a useful method to assess the current load carrying capacity of a structure and state of damage in concrete structures in-situ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.