Abstract

To facilitate the application of support vector machines (SVMs) in embedded systems, we propose and test a parallel and scalable digital architecture based on the sequential minimal optimization (SMO) algorithm for training SVMs. By taking advantage of the mature and popular SMO algorithm, the numerical instability issues that may exist in traditional numerical algorithms are avoided. The error cache updating task, which dominates the computation time of the algorithm, is mapped into multiple processing units working in parallel. Experiment results show that using the proposed architecture, SVM training problems can be solved effectively with inexpensive fixed-point arithmetic and good scalability can be achieved. This architecture overcomes the drawbacks of the previously proposed SVM hardware that lacks the necessary flexibility for embedded applications, and thus is more suitable for embedded use, where scalability is an important concern.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.