Abstract

Abstract The fractional reaction-diffusion equations play an important role in dynamical systems. Indeed, it is time consuming to numerically solve differential fractional diffusion equations. In this paper, we present a parallel algorithm for the Riesz space fractional diffusion equation. The parallel algorithm, which is implemented with MPI parallel programming model, consists of three procedures: preprocessing, parallel solver and postprocessing. The parallel solver involves the parallel matrix vector multiplication and vector vector addition. As to the authors’ knowledge, this is the first parallel algorithm for the Riesz space fractional reaction-diffusion equation. The experimental results show that the parallel algorithm is as accurate as the serial algorithm. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.3-3.4 times faster than the serial algorithm on single CPU core. The parallel efficiency of 64 processes is up to 79.39% compared with 8 processes on a distributed memory cluster system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.